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Finite Element Methods for Elliptic Equations 
Using Nonconforming Elements 

By Garth A. Baker 

Abstract. A finite element method is developed for approximating the solution of the 

Dirichlet problem for the biharmonic operator, as a canonical example of a higher order 

elliptic boundary value problem. 

The solution is approximated by special choices of classes of discontinuous func- 

tions, piecewise polynomial functions, by virtue of a special variational formulation of 

the boundary value problem. The approximating functions are not required to satisfy 

the prescribed boundary conditions. 

Optimal error estimates are derived in Sobolev spaces. 

1. Introduction. In this work a finite element method is proposed for approxi- 

mating the solution of the Dirichlet problem for elliptic equations. 

Although the method is applicable to general 2mth order operators with inhomo- 

geneous boundary condition, for reasons of clarity and ease of exposition, the method 

is displayed here on a simple 4th order case, the Dirichlet problem for the biharmonic 

operator with homogeneous boundary conditions. 
The main features of this method lie in the fact that it uses nonconforming ele- 

ments, optimal error estimates are derivable in the space L2, and the piecewise poly- 

nomial functions used to approximate the solution are not required to satisfy the pre- 

scribed boundary conditions. 
There are existing finite element methods treating higher order elliptic equations; 

for examples of expositions we cite the least squares method [5] and the more standard 

variational method in [9]. These variational methods require that the spaces of piece- 

wise polynomial functions used to approximate the solution of the boundary value 

problem satisfy certain continuity conditions (imposed on the functions and their deriv- 

atives up to a certain order) across the interfaces of adjoining elements. These require- 

ments precipitate rather complicated computations for high order operators. 

In the method developed in this work, these complications are entirely avoided. 

The spaces of functions used to approximate the solution consist of polynomials de- 

fined locally on each element with no conditions of continuity across interfaces, and 

are thus subspaces of L2. 
The relaxation of all continuity conditions is achieved by working with a special 

variational formulation of the boundary value problem, which is compatible with the 

relative arbitrariness of the subspaces. This in essence involves the construction of 

certain bilinear forms which exploit certain "inverse assumptions" satisfied locally on 

each element by the approximating functions. Similar considerations allow the result 
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that the members of these approximating spaces need not satisfy the prescribed bound- 
ary conditions. "Inverse assumptions" of a more global type have been used in non- 
standard, conforming variational methods in [7] and by the author [2]. 

It is proven that the method is optimally convergent in L2, and that on each ele- 
ment derivatives of the error up to the order possessed by the solution converge also 
optimally in L2. 

Another advantage of the method lies in the fact that, since there are no con- 
tinuity requirements across the interfaces, arbitrarily high order polynomials may be 
used on each element, yielding an accuracy of approximation as high as the smoothness 
of the solution allows. In contrast to methods requiring conforming elements, the use 
of high order polynomials is restricted by the resulting computational difficulties in 
meeting these requirements. 

It should be noted that although this nonstandard variational method involves a 
bilinear form which is formally more complicated than the standard variational method, 
the additional interelement terms are easily computed for example in the case of parti- 
tions of the domain into N simplices or N-dimensional parallelepipeds. 

2. Notation. 
2.1. Function Spaces. For D a bounded domain in the space R', of variation 

x = (x1, X2, ... ., x,), HP(D), for real p, will denote the Sobolev space of order p 
of real valued functions on D. (-, )pD and 11 hIpD will denote the inner product and 
norm, respectively, on HP(D). For definitions and the relevant properties of the spaces 
HP(D) for p > 0, we refer to [6]. D and 3D will denote the closure and boundary of 
D, respectively. 

The space of infinitely differentiable functions on D (D) we denote by C(D) 
(C'(D)). Following [8] we note that for p > 0, the norm I-1ILp D on H-P(D) is de- 
fined by 

1IIVILp,D sup - (v, 11'pVED HP(D). 

Similarly HP(3D) will denote the Sobolev space of order p of real valued func- 
tions on 3D, with 1-1p aD denoting the corresponding norm. Again for definitions and 
the properties of these spaces we refer to [6]. For brevity, we shall write the inner 
product and norm on L2(aD) = H0(aD) as 

('4 )aD= faD spda and kPlaD {( , ) } 1/2, 

respectively. The space of infinitely differentiable functions on 3D we denote by 
C-(aD). 

We shall also use the notation 

d(D) = sup Ix -yI, 
where xyED 

x ( 1/2 
1Ix= Xi3 
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2.2. The Boundary Value Problem. Let Q2 be a bounded domain in Rn with 
boundary 32 which is assumed to be an (n - 1)-dimensional manifold of class Co. We 
are interested in approximating the solution of the following boundary value problem. 

A function u defined on Q2 is sought satisfying 

A2u =f in 2, 

(2.1) u= 0 
au 0 on a2. 
an 

The operator A is defined by 

" a2_ 
A = E 

2 and A2u = A(Au). 
i-= axi 

f is a given function. 
Concerning existence, uniqueness and regularity of the solution we have the 

following theorem. 
THEOREM 2.1 (CF. [6]). The mapping P: C'(92) C'(97) x C? (3) x Cx (3) 

defined by Pu = (A2u, u, au/an) and completed by continuity, is a homeomorphism 
of HS(&2) onto Hs-4(&2) x Hs-1/2(a&2) x Hs-3/2(3&2) for all s > 4, and there exist 
constants as and O3s such that 

IIUII, ? a~s II A2UI +4s I~..,a ? u<O ? 1 u IIIsSZn lu1s5 as l lA ls-4,sn + IUls-1 12 ,an + 3n| AUsl 1;5- 
s-3/2 ,anS 

Henceforth we make the following assumption on the data f of the boundary 
value problem (2.1); f E Hs-4(2), for some s > 4. Thus by Theorem 2.1, the bound- 
ary value problem possesses a unique solution u E Hs(&2). 

2.3. Partitions of Q2. Let Hh(92) = { 1 2a... a &2m} be a finite collection 
of subdomains of Q2, where 

hi = d (2i.), i = 1 2, . ..,m 

and 

h= max hi. 
1 <iam 

We shall say that Rh(2) is of class G(92) if 

(i) U i= l Qi ; 
(ii) gQi n Qj2= 0 for i :Ai, i, i = 1,~ 2, ... ., m; 

(iii) Each &2i is a regular domain in Rn (i.e., the divergence theorem holds on 

92), and is starlike, i = 1, 2, . . . , m. 
(iv) The surface 3a21 n a3;2 is an (n - 1)-dimensional manifold which is mea- 

surable with respect to Lebesgue measure on Rn-1 induced by Lebesgue measure on 
Rn. 

(v) There exists a constant 0 < v < oo such that 

max d(Si) < v min d(Si), 
I iam 1 iam 
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where Si denotes the circumscribed sphere of &2i and Si denotes the inscribed sphere 
of 92i, i = 15 25 ... ., m. 

It follows from (v) that 

(2.2) h < Phil, 2, . . ., m. 

Henceforth, it will be assumed that the domain & is partitioned as Hh(S) E 

G,4() for some fixed v independent of hi, i = 1, 2, . .. , m. This process is referred 
to as the divison of & into "regular" finite elements. Note that the condition (iii) 
above on the elements ensures that Rh(W) includes partitions of i into convex ele- 
ments and more general elements. 

With Hh(?) we associate the following notation, defining certain important sets. 
We define the surfaces 

a&ij = a&i n ar2i i, = 1,2, . . . , m. 

The orientation of Mfid. is defined to be such that the normal points in the direction 
outwards from the interior of &i at each point. 

Ni = {U: M~i~j 0 , i = 13,2 .. . m; 

as*= au n aQ, i = 13,2 . . .m; 

3W is nonempty in the case where &i and 2 have portions of their respective bound- 
aries in common. 

The following matrix will be useful; define 

Ti, = { 1,j= 1,2,... ,m. 
0O, i >j, 

If v is a function defined on EL then v(i) will denote its restriction to &i, i = 1, 2, 
. . ., m, and we shall denote by v the corresponding ordered m-tuple of functions 
(V( 1 ) V(2) 3. * V(M )). 

Conversely, for any ordered m-tuple of functions (v(1), v(2), . ., v(m)) with 
v(') measurable on Ui we denote by v the function defined a.e. by 

V(X) = Vow(, xGE 2i, i= 15 2,... ,m. 

With each subdomain &i of nh(M) we associate the following boundary operators 
associated with the boundary value problem (2.1); for v sufficiently smooth on 2i, 

we define 

B0 =v, an 

So =V - (AV), SIv = -Av. 

The operator Sk is "naturally" associated with the operator Bk prescribed in 
the boundary value problem (2.1) via the Green's identity for the operator A2. For 
u, v sufficiently smooth on R, 
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(2.3) (AU, Av)0 i 
= 

(U , V)0-i E (SkU, BkV)aQ a 
k=O 

Wherever the operators SO and B1 appear in the inner products, the normal 

derivative is taken in the direction in which the normal in the surface is oriented. 

The following lemma will be used repeatedly. For an outline of a proof see [3]. 

LEMMA 2.1. There exists a constant 0 < C < oo such that for any &2i C eh(M) 
if v C Hk+ I (g2), k a nonnegative integer, then 

\ankv 2 {771 +n ? 7llVll2 1 

for any 7 > 0. The constant C is independent of hi, i = m, 2 . 

Throughout the rest of the paper, C will denote a generic constant, not necessarily 

the same in any two places. 

3. Finite Dimensional Function Spaces on Ih(Q)* Given h(Q2) E G,(2) we 

assume the existence of function spaces Shi (g2j) i = 1, 2, . .. , m, consisting of real 

valued functions defined on &2i. These spaces of functions are each required to satisfy, 

(1) Sh (g2i) is finite dimensional. 

(2) Sh (&l) C H1(92i) for some 1 > 4. 

(3) There exists an integer r > l and a constant C independent of hi, such that 

for any v C HS(2), l < s < r, 

inf Z hilIv - XI1ja < ChMI1vII 
xehi(s2 j= 0 

(4) There exists a constant C independent of hi such that for any X C Shie(Q), 

II llXll h I a for all ( A A1. 

From the assumption (4) and (2.2) it follows that 

(2.4) IIxII',n < Ch ( )II XIIa,&2. 

The assumption (4) is referred to as an "inverse assumption". 

For example, if Rh(2) consists of a triangulation of the domain Q2 (the peripheral 

triangles will have one "curved" side, i.e., the 3W), and we take Sh(2i) = Pr-l (nl)' 

the set of polynomials of degree < r - 1 on &2i, then all the assumptions (1)-(4) may 

be verified. 

In particular, Shi (g2i) C C (Qid 

S 

inf E: hill v - X llj a~ < ahsll V lls a 

XePri(SiMi) j=0 

for all v C Hs(92j), s < r. See [4] for proofs. 

Finally we set 
m 

Mh = ish(Q 
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A generic point of Mh shall be denoted by X = (XMl), .. ., X(m)) with X(i) E S ), 
i= 1,2,...,m. 

It is important to observe that the function spaces Shi (g2i) are entirely independent 
of one another. It is for this reason that the projection method to be defined below, 
which uses these function spaces to approximate the solution of the boundary value 
problem, is said to use nonconforming elements. That is there is no conforming con- 
dition (continuity or continuity of derivatives) imposed on the functions (say poly- 
nomials) as one crosses the interfaces of adjoining elements. Each point of Mh may be 
interpreted as a function in the space L2(g2). 

The basic idea in the projection method is that if u is the solution of (2.1), then 
we shall approximate u locally by approximating u(i) by a member of Shi (i), i = 

1, 2, ... , m. 

4. The Energy Space. Associated with Hh(&) we define a normed linear space 
Hh to be the set contained in the space fl'm 1H4(92i), a generic point of which we de- 
note by v = (v(l), . . ., v(m)), with v(i) E H4(g2i), furnished with the norm 11 hIHh de- 

fined by: 

11 VIIHh = E 1 V losi 

+ E[E ij(h(2k-3) IBk - BkV 1a 2 

k= o LiE=- 
(4.1) 

+ h(2)Skv-I)I1 2 

~ 1/2 

? h(2k-3) IB V(i) 12Q + h-(2k-3) ISkv 2 lj t) 

It is to be understood that the normed linear space Hh is not complete; however, 
if u E H4(2) is the solution of (2.1), then u = (u(1), . . . , u(m)) E Hh. 

Also, clearly, Mh is a finite dimensional subspace of Hh. The following propo- 
sition states precisely how points in Hh are approximable by points in the subspace 
Mh . 

PROPOSITION 4.1. There exists a constant 0 < C < oo such that if v E Hh and 
is such that v(i) EHs(92i), i = 1, 2, . . . , m, for 4 < s < r, then 

inf II V -XIIHh Chs-E lIVip IIs, 
XEMh hi=1 

where C is independent of hi, i = 1, 2 m. 
Proof. Let v E Hh. By the property (3) of Section 3 of the spaces Shi(g2i), there 

exists a X E Mh such that 

(4.2) I v1') - XIIi < Chs jI?v(i)I fI = 1, 2, . . . , 

for all 0 < j < 1. 



FINITE ELEMENT METHODS 51 

Set w = v - X. Now from (4.1), 

W112 < i IW 1, 1,) 

? h )ISkw( )I j) 

h(2 k3) IBkw(i) Iz2 + h (2k3)ISk W(i)i z*] . 

Also by choosing q = hi in Lemma 2.1 we have, for k = 0, 1, 

W~i) 12 akW(i) 2 
- a< k sz C{h7 1|w(')Iik 2 + hiIIW (i) ii+1,5} 

ch 2(s-k)- I1 II (i) 11 2 < Ch2 (S-k)-1 11 (i) 112 

where we have used (4.2) and the fact that 2(s - k) - 1 > 0. 

Similarly, for k = 0, 1, we have, 

I a l-k 2 

4.5) 6 C{h1 II w( )1Ik,ni + hIw 2 k,Si} 

? C {h-' I W(i)II11,2 + h1 IIW(i)II2k~1 < ~i lwil23_ k ni +h|w 14-k,ni} 

Ch3 (s+ k)-7 11 V(i) 112 < Ch2 (s+ k)-7 11 V(i) 11S2Q 

again since 2(s + k) - 7 > 0. 

Now using (4.4), (4.5) and (4.2) with j = 2 to bound the appropriate terms in 

(4.3) we obtain: 

(I 12~ < Ch2(s-) 
I 
IV(i)11S2 5 < C h s-2 I lv(i)II 

And so, 

IIV XIIH ?h Cs-2 ? 'ni 

which concludes the proof. 

5. A Bilinear Form. We define a bilinear form B7(., ): Hh x Hh RI as 

follows: for u = (u(I), . . ., u(m)) and v = (v(1), . . ., v(m)) EHh, 
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Bh (u, V) i= i ( 1 

+ ri[ jT ((B u(i) - B u(i),S v(S)) 
k=O ENi ij 

+ (Bkv(') -Bkv('), SkU(i),a Q 

(5.1) 

+ ,yh(2k-3)(Bku() -BkU('), Bkv(') BkV())an Q) 

+ (Bku(i), SkV(i))a* + (BkV(i), SkU(i)ka 

+ yh(2k 3)(BkU(i), Bkv(i))aW] . 

Here -y is a positive constant depending on the constant associated with the inverse 
assumption (4) of Section 3. Below, it will be shown in Proposition 5.1 that for -y 
chosen sufficiently large, the form B'Y(, ) is positive definite on the subspace Mh. 

Again in (5.1) the surfaces 39ij and )W are oriented so that the normal points 
in the direction outwards from the interior of Q2i; wherever the operators B1 and SO 
appear in inner products, the normal derivative on the surface is taken in this direction. 

PROPOSITION 5.1. There exists a constant 0 < z < oo such that if y > , there is 

a constant c > 0, independent of hi, i = 1, 2, . . . , m, such that 

Bhw, w)> c"H for all w E Mh. 

Proof. From (5.1), if w E Mh, then 

BhY (W. W) 1AW t(i) 11 2o 
i=l1 

? G Ti j2 (BkW - BkW(i), SkW(i))a f2 
k=O LENi 

(5.2) 
+ yh(2 k 3) IBkw(i) -Bkw() 1I2 j + 2 (BkW(i) ,SkW ))a s 

+ yh(2k-3) IBkW(i)I1 |2 

Now by successive applications of Schwarz' inequality and the arithmetic-geo- 
metric mean inequality we obtain 

2(BkW(i), SkW(i)')a < 2 IBkW(i)Ian* ISkW() Iasz 
I I 

(5.3) = 2 {[ 1h(2k-3)] 1/2IBw(i)I an} {[CIh(2k-3)1-1/2ISkw(i)Ias*} 

< k B W(i)12 c + ch-(2k-3)IS w I2 * for akn afz.O 

for any c > 0. 
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Similarly 

2 (BkW ) - BkWW(i) SkW(')?a Qij 

(5.4) 
h(2 k-3)Wj)1 23isWi2 < J(2t ) IB w(i) -Bkw(')I2zQ + ch ( ISkw ai. 

for any e > 0. 
Using (5.3) and (5.4) in (5.2), 

m 
B'Y(w, W) > I 

IA|W (i) 11 
2 

+ = [ ij ((- h(2 k-3) IBkw(') - BkW(i) 2i j 

ch I Skw Ia ni j) 2 
- (hl 2 -e) I Ihh- (2k-312 

\ ' [Eh ( h-(2k-3k(i)ISWi I 

? (( !) )h ) 122-k3) 1aQ 2J 

?- 2h Ikkw- 3 ) ISkW(i) - w j ) 

? (7 ( k 3 )k(i|2k+ (i_) -Bhw(2k3)Ia a 

-2ch2 (k-3)ISkw(i) I an* 

Now by Lemma 2.1, with n = hi, k = 0, 1, 

(5.6) Swi)25 = |a77 (vw('),) |; 

? C{hTIIlAw(OIIk. ?i hiIIAw(')IIk SZ}. 

Since Aw"i) e Sh (i) we may apply the inverse assumption (4) to obtain 
from (5.6), 

ISkw(')laI~ 
? 

C{h~l lh72(1-k)II Aw(')Ig 
a. 

? 
hihT-2(2-k)IIAw(i)IIo a} 

(5.7) 
= Chi(2 k-3)Iw(i)10 I h, k = 0, 1 B. 
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Hence from (5.7) and (2.2), since 2k - 3 < 0, 

(5.8) h (2k3)ISkw()I2 < C A2kIIAw(i)I0 S CIIAW(i) 

Using the bounds (5.8) in (5.5), we arrive at 

B" (w, W) > E ((16-C)IIW(i)II2 I 
i=l 

(5.9) k=O EL-Ni \ 1i 

+ ch2k-3) ISkw(ia )i 

+ ( ) h(2k-3)IBkw(i)I12 + ch(2)ISkw-3) j2 

In (5.9), e > 0 has been so far unspecified. We now choose 6 such that 1 - 
WC > 0, and ^ such that 5 - e-1 > 0. Then for y > - we have from (5.9) 

Bh (wx w) >, ellWI12h h H~~~h 

where C = min{(1 - eC), ( - p71), e}. This concludes the proof. 

PROPOSITION 5.2. There exists a constant 0 < C < oo such that 

th (U )< Cll U tHh 11V ttHh' 

for all u, v E Hh. C is independent of hj, i = 1, 2, . . . , m. 

Proof. Let u, v E Hh; then applying Schwarz' inequality to each term of 
(5.1) 

IB'Y(u, v)l IIE A1UM II IIAilV( )llo0Qi 

+ r Ge Ti j h 2 IBku(') -Bku(j)Ian h 2 ISkV( )lan 
k= O UENi 

idi 

+h( 2 IBkV(i)-BkV(j)Ians *h 2 
ISkuO)IaE2 

+ yh(2 k-3) [Bku(i)-BkU() |a ni I[BkV iBkV an ij 

(5.10) 
i 

(2k3) (2k-3) 
+ h 2 Bku(i)la *h 2 lSkV(i)lan* 

2k-3) (2k-3) 

+ h 2 lBkV(i)la n*h 2 ISkU()IaW* 

+ ih(2k3) IBku( ) anQiBkV 
i 

af2 - ? 
~~~~~~ 
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Again by Schwarz' inequality, applied to (5.10), 

BhY (U. V) < ( A U(i) 11o 2~ 

? Ej [z rTi,((l + y)h(2k3) IBku( -Bku(1)I2 
k=O Ei 

+ h-(2k-3)ISkU(i)12 j) 

+ (1 + y)h(2 k3) IBku(i) a n h- (2k3) ISku(i) -al ni ) 

iF~~~~~~~~~~~~~~~~ 11 Av t5 (i) 112o 

+ E Ge T ((1 + )(2 k-3)1 v1)B (~2 ? O[ (( 1 ? y)h )IBkV(+ ) - BkV( a nI j 

? h-(2k-3)ISkV(i)I~z1) 

( 7) k a Q k a ak a} 
? (1 ? ~y)h(23)IBkv' a +-~ ?- h(k) nvi)I~zi] 

S (1 + 'Y)IIUIIHh II VHh' 

which gives the result and concludes the proof. 
We now show how the bilinear form By (, ) characterizes the solution of the 

boundary value problem (2.1) via a variational equation on the space Hh. 
If u, v E Hh, then an application of Green's identity to each subdomain ?j 

yields from (2.3), 

m 
(Au(s), AV(i))o Qi 

(A2 U v(i) 0,5 - 1 (sku , Bkv n 
j= Ii k=O BV i))~ 

(5.11) = yj} (A2U(i) v('))0 ,i 

k=O L rTisi ((SkU , Di v';BkVON n (Sk U(j) BkV))an ) 

+ (Sku(i), BkV(ib)aW 

Substituting (5.11) into (5.1),we obtain 
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m 
B'y (u, V) = 5U(i), V(i) )O H 

i=1 ' 

[ETij((BkU(') 
- 

Bku(O'O SkV(i))ai - 
k=0 EENi Hi 

(5.12) + yh(2 k-3)(BkU(i) -BkU(j), BkV(i) - BkV(i))a , 

- (SkUU) - SkU( j), BkV( i))a n j 

+ (Bku(i), (Sk + yh(2k3)Bk)Vi)a*]. 

Hence if u E H4(U) is the solution of (2.1), from (5.12), 

(5.13) Bhy(u, v) = (f v)O Q for all v E Hh. 

We remark that (5.13) is the variational equation satisfied by u, the solution of 
(2.1). B'y (u, v) is explicitly computable in terms of the data, f, of the boundary 
value problem, for each v E Hh. 

6. The Finite Element Approximation and Error Estimates. We now prove 
the essential results of the paper. First, we establish the existence and uniqueness of 
a uh E Mh the finite element approximation to u, the solution of (2.1). It will be 
seen that uh is explicitly computable using the data of the boundary value problem, by 
solving a certain system of linear algebraic equations. 

Finally, we derive quasi-optimal error estimates in the Sobolev spaces H-P(2), 
o < p < r - 4 (in particular in L2 (U)), and show in addition that the higher order deriv- 
atives of uh defined locally on each ?i converge in L2 (pi) to those of u, again at an 
optimal rate. 

THEOREM 6.1. Let u be the solution of the boundary value problem (2.1), with 
u E Hs(U) for some s > 4. Then for each rh(Q2) and corresponding Mh, there exists 
a unique uh E Mh satisfying 

(6.1) B (u.h, v) = (f, v)o , for all v E Mh. 

Furthermore, there exists a constant c independent of hi, i = 1, 2, ... ,m, such 
that 

(6.2) IIU-UhIIHh < Chs-2 II uIIsaX 

(6.3) lu - uh ILp a < Chs+PI1u Isn for O p < r - 4, 

(6.4) E IIDa(u(i) - uhi))II0 n. < Chs-laluIIs', 

for 0<?cl <Is,ls<r. 
Proof. Solving Eq. (6.1) for uh E Mh is equivalent to solving a system of a(m) 

x u(m) linear algebraic equations for the coefficients of uh with respect to a basis of 
Mh, where a(m) is the dimension of Mh. 
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Since by Proposition 5.1 the form B'(y, ) is positive definite on Mh it follows 
that the matrix is itself positive definite and so nonsingular.. Hence uh exists uniquely. 

To derive (6.2) we first note that by Proposition 4.1 there exists a t E Mh such 
that 

(6.5) || u - t |Hh 
< Chs-2I 2|U|| IIS. 

Now since U - Uh E Mh, by Proposition 5.1, 

lit Uh 
2 

MH ? S CBh( -Uh, t Uh) = CBZY( -u + u-Uh, t-Uh) 
(6.6) 

= CB) -u, t-Uh) + CBM(u Uh, t Uh). 

Now from (6.1) and (5.13) it follows that 

(6.7) B)Y(u-uh, X)=0 forallXEMh- 

Hence (6.6) reduces to 

(6.8) lIt -Uh||Hh S CB'YQ-u,-uh)SClt UIIHh R UhIIH , 

where we have used Proposition 5.2. 
Hence from (6.8) and (6.5) 

t - Uh Hh h CII U||Hh 
< Ch UIlSSQ 

Finally combining this last estimate with (6.5), 

IIUUhIIHh < IIU IHh + 1It UhIIHh < ChsI2 11 |Is n 

which is the required result. 
We now derive (6.3). Set e = u - uh, and let i E C(Q). By Theorem 2.1 

there exists a unique p E C'(Q) such that 

,A2p=4 inQU, 

f=0 0 

on 

aso/an =0 

and for all t > 4, 

(6.9) lko ltl,n C' 11 l 111i-4,n 

Also by Proposition 4.1 there exists a E Mh such that 

(6.10) l11p tlfh<S Ch -211<p1t n. 

From (5.12) we have 

Bp(p, e) = (, e)o0-. 

Hence from this last equation, (6.7), Proposition 5.2, (6.9) and (6.10) we have 
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(;,e)o n = BY(ip, e) = B'Y(e, ep) 

= B'Y(e, (p - .) < ClIeIIH. IkP - OiHh S Cht2 IkIt, n IlellHJ 

?Cht 2 1P Ot-4, I|eIIHh, 4St~r, 

on (/, e)On/II0IIt4,n < Chti211ellH- 
Hence 

1 ell-(t 4) S Ch -2 lellH 

setting p = t - 4, and using the estimate (6.2), 

||elp. < pC P +2lellHHh <Chs+P Ilulls, n 

for 0 S p S r - 4, l S s < r, which is (6.3). 

To derive (6.4), let t be chosen as in (6.5). Then in particular, 

(6.11) Ilu(i) - t(Ollj i S Chs-jIu(')Ils n for all O S . 

Hence for 0 S q S s, using (6.11), 

, 2 Ie I,, ? O 11u') - ~(l)1q, + 0- ulzlIu( qll } 
(6.12) S= i U 

i= i= 

Now using the inverse assumption (4) on each ?A, (6.12) becomes 

S Chs-qIIulls n q 
qi=1 ii=1 

i= 1 

S Chs -qu U + Chqll - Uh~loIn 

S Chs-qIIulls n + Ch-q III - 110 9 + IIU U -UhIIO, g }. 

Finally from (6.3) with p = 0 and (6.11), 
m 
1: Ile(')Ilq fi S Chs-ql11u llsa.. 
i= 1 

This gives (6.4) and concludes the proof. 
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